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Abstract

Standardized exams are a popular measure of education quality. However, there is
increasing concern and evidence on the negative effects of external factors, such as
pollution and temperature, on exam performance. In our paper, we provide the first
empirical evidence on how the exam stakes affect the sensitivity of performance to tem-
perature. We explore a unique context in which the stakes of a large-scale standardized
exam change from relatively low to high. We use within-individual variations in exam
scores of millions of exam takers in Brazil and temperature across two exam days. We
find that a one standard deviation increase in temperature during the exam decreases
the average exam score by 0.036 s.d. Exploring time and geographical variation on
exam stakes, we find that the higher the stakes, the smaller the effects of temperature
on exam performance. Our results suggest that effort is an important channel through
which temperature affects exam performance. In a high-stakes environment, exam tak-
ers exert more effort, counterbalancing an otherwise important temperature effect in a
low-stakes setting.
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1 Introduction

Standardized exams are a popular measure of education quality and a widely used re-

source allocation criterion. That includes government financial transfers to schools, teacher’s

compensation, college seats, and financial aid. Worldwide, standardized tests are preferable

measures to compare test-takers across different contexts and across time. It is also a cheap

and effective signal available, especially to high-achieving low-income students in, for exam-

ple, college applications in the US (Hyman, 2017). Standardized tests, on the other hand,

have received increasing push-back due to scores being sensitive to an array of demograph-

ics, psychological and context-specific characteristics such as gender, socioemotional skills,

pollution, and temperature.1

There is increasing academic and public attention towards the effects of temperature

on exam performance and its consequence on human capital accumulation. The literature

findings on adverse effects of temperature are especially relevant in high spatial temperature

variability contexts without universal air conditioning coverage, like in the US, Brazil, India,

or China. However, the perceived importance of an exam to individuals’ outcomes directly

determines students’ incentives to exert effort and, therefore, their ability to respond to

unexpected external shocks. Whether high- or low-stakes contexts drive the current evidence

on the effects of temperature on cognitive performance remains an open question.

This paper provides the first empirical evidence on how exam stakes interact with the

effects of temperature on performance. Using individual-level data on millions of exam

takers in a national high school exam administered yearly in Brazil, we estimate the effects

of transitory temperature shocks on exam scores and how it interacts with the exam stakes.

For instance, Park (2020) develops a model on how heat increases the disutility of effort.

In a low-stakes environment, a significant portion of the reduction in performance can be

1See Borghans et al. (2016); Ebenstein et al. (2016); Graff Zivin et al. (2018); Reardon et al. (2018).
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due to reduced effort. In a high-stakes environment, test takers have incentives to maximize

effort. In such cases, the effects of temperature on scores are more likely due to temperature

effects on cognitive performance, conditional on effort.

Our empirical strategy can distinguish between effort and cognitive effects by exploring

a unique context in which a standardized exam varies its stakes gradually. We use data on a

national high school exam largely used for college admissions. Over time, the national exam

gained importance as institutions gradually moved to this centralized admissions system.

Before this system was available, the exam was also used for college admissions, provid-

ing bonus points and less commonly used as a necessary admissions criteria. Universities

across the country joined the centralized system at different points in time. When a univer-

sity adopts this centralized system, this national exam becomes a necessary (or exclusive)

admission criteria.

Our identification strategy leverages the fact individuals take different subject exams on

two consecutive days to identify the effects of temperature on performance. This allows us

to control for time-invariant individual characteristics such as exam preparation and general

ability. With this strategy, we identify the causal impact of transitory temperature shocks

on exam scores. As exogenous variation in exam stakes, we use temporal and geographical

variation in the number of universities adopting the centralized admissions system. Although

this is a national policy, we also explore a context-specific fact that college attainment costs

(e.g., pecuniary and non-pecuniary) increase with distance to the university. For instance,

in Brazil, about 90 percent of students attend college in their home state.

Our findings suggest that effort is an important channel through which temperature

affects exam performance. First, our baseline results show a negative average impact of high

temperature on exam scores – a one standard deviation increase in temperature decreases

exam score by 0.036 s.d. The effects are non-linear, especially when the temperature increases

to the high 30s. When we interact temperature with the proportion of universities in a
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locality using the national exam as a mandatory admission criterion, we find that the higher

the stakes, the smaller the effects of temperature on exam performance. This suggests that,

in a high-stakes environment, exam takers exert more effort, counterbalancing an otherwise

large effect of temperature if stakes were lower.

Our paper contributes to the extensive literature on determinants of achievement and,

also, to a small but growing literature on weather shocks and performance. Current evidence

shows that high temperatures harm exam performance, with cumulative consequences on

learning. Studies directly related to ours estimate the short-term, contemporaneous effects

of temperature on performance. Park (2020) finds a negative effect of temperature on test

performance, with persistent longer-term impact on educational attainment. Using high-

stakes college entrance exams, Graff Zivin et al. (2020) exploit temperature shocks on the

exam day and find negative effects on college entrance exam scores and the probability of

joining first-tier colleges in China. Another branch of this literature estimates the effects of

prolonged exposure to heat. In the US context, Park et al. (2020) find a negative impact of

a hot year on learning. Based on the total number of hot days in the year before the exam,

Garg et al. (2020) find a negative impact of temperature on performance, mediated by an

agricultural mechanism.

Our study contributes to the literature in several ways. Our findings on the average ef-

fects of temperature during the exam on performance improve over previous work confounded

by grade manipulation (Park, 2020) or concentrated on top achieving students accepted at

universities (Graff Zivin et al., 2020). In the Brazilian context, our paper directly relates

to Li and Patel (2021), who also estimate temperature effects on exam performance in the

same context and using the same exam data as ours. Our and their study were developed

independently and they differ substantially: While our paper finds a negative, statistically,

and economically significant effect, their paper finds negligible and insignificant results.2

2A detailed discussion on the differences between our study and theirs is provided in Appendix D.
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Most importantly, we are the first to explore variation in stakes in the same nationwide

standardized exam, providing first evidence on how effort mitigates the harmful effects of

heat. While Park (2020) provides important theoretical predictions, they could not test the

proposed mechanisms due to lack of variation in exam stakes. Exploiting a unique context

in which exam stakes vary over time across municipalities, we can empirically distinguish

between the theoretically suggested cognitive and effort mechanisms. This evidence partic-

ularly informs policy using standardized test scores to allocate resources, especially when

performance is more likely affected by external factors. For places with higher temperature

variability, allocating resources based on individual performance on standardized exams can

exacerbate inequality.

This paper proceeds as follows. In section 2, we describe the institutional background

in Brazil. Section 3 formulates the conceptual model, and in section 4 we describe the data.

We discuss our identification strategy in Section 5 and provide results in Section 6. Section

8 concludes.

2 Context

Admissions to public universities in Brazil rely exclusively on entrance exam scores. Un-

til 2009, universities had their specific admissions process and entrance exams (the Vestibu-

lar), and students applied directly to the institutions of interest. Institutions often provided

bonus points based on performance on the Exame Nacional do Ensino Mèdio (ENEM, Na-

tional High School Evaluation Exam), marginally increasing one’s chance of acceptance.

ENEM is a non-mandatory national exam initially created as a high school evaluation

but mostly taken by people interested in college.3 The exam is administered once a year in

3In the socio-economic survey administered to all exam takers, 88% ranked “college application” as the
most important reason for taking the ENEM, on a scale of 1 to 5. About 80% also listed “obtaining financial
aid for college” as a relevant factor.
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several localities across all states. Registration costs 68 reais (≈ 18 USD) and a fee waiver is

an option to low-income applicants. Anyone can take the exam, from high school seniors to

adults of any age pursuing tertiary education or interested in obtaining a certificate equivalent

to a high-school diploma. The test works as a self-assessment tool, and students’ scores reveal

their chances to get into college and specific majors. Applicants can use their scores to apply

to public universities and get federal financial aid to access private institutions (scholarships

or student credit). From its creation in 1998 until the 2009 reformulation, ENEM was

considered less relevant to public university admissions than the universities’ exams, the

Vestibulares.

In 2008, the federal government conducted a comprehensive college admissions reform

by reformulating the ENEM and creating a centralized university admission system (SISU,

Sistema de Seleção Unificada). ENEM was reformulated to be more rigorous, and its content

aimed to reflect the national mandatory high school curriculum. It became a two-day exam

consisting of four modules, totaling 180 items, plus one essay. Final scores are calculated

based on Item Response Theory, which allows score comparisons over time. October of 2009

was the first time the new ENEM was administered. Students could use 2009 ENEM scores

to apply for the first SISU edition in January 2010. The process repeats once every year.

As of January of 2010, colleges participating in SISU could offer seats to students taking

the ENEM score as the only criteria, assigning their preferred weights to each exam module

and essay. All state and federal institutions were allowed to join the system. Although adop-

tion was not mandatory, universities had the incentive to lower their costs by transferring

their admissions process to the federal government. Voluntary college adhesion to this cen-

tralized system increased over time. Participation increased from 25 colleges in 2010 to 92

in 2017.4 As a result, the introduction of SISU was a significant push to establish ENEM as

4These statistics exclude the adoption of SISU by federal institutes of education. These institutes provide
a mix of secondary and tertiary education and provide different types of degrees. In our analysis, we only
account for the adoption of SISU by federal and state universities and colleges.
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a high-stakes exam, becoming an important criterion to grant or deny admission to college

among participating institutions.5

Applicants from all over the country can apply to a university through SISU. However,

individuals in Brazil have high mobility costs for college purposes. Only about 10% of

college students nationwide attend out-of-state colleges, and about half are from the same

municipality the university is located (Machado and Szerman, 2021). Therefore, even though

SISU can induce people to apply to universities outside their residence locality, we assume

that individuals living close to campus are more affected by the policy than individuals living

elsewhere.

3 Theoretical Framework

This section describes a model that captures the effect of temperature and exam stakes

on scores. We build on the setup in Park (2020). We modify it to fit our context and add

additional proofs for our main hypothesis.

Suppose that exam takers gain utility U(w, e, a), where w is future wages, e is the effort

made during the exam, and a is the temperature during the exam. We assume that (i)

higher future wages increase utility
(
∂U
∂w

> 0
)
, (ii) exerting effort is costly

(
∂U
∂e
< 0
)
, and (iii)

a higher temperature gives discomfort and decreases utility
(
∂U
∂a
< 0
)
. We also assume the

diminishing marginal returns to future wages
(
∂2U
∂w2 < 0

)
and the convex cost of effort to

utility
(
∂2U
∂e2

< 0
)

.

We further assume that the disutility from the effort and temperature during the exam

and the utility from future wages are separable: U(w, e, a) = u1(e, a) + u2(w). This is

plausible since future wages are not realized on the exam dates but later in their lives. This

assumption implies that the effort level or temperature during the exam do not affect how

5Universities could offer all or partial seats through SISU. In some cases, universities adopted SISU as
one admissions criteria, with additional college-specific exams.
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an increase in future wages improves utility, reflected in ∂2U
∂w∂e

= 0 and ∂2U
∂w∂a

= 0. Moreover,

we assume a higher effort cost under a hotter environment, ∂2U
∂e∂a

< 0, which is consistent

with findings in previous studies (reviewed in Lim et al., 2008).

Future wages are determined by exam score y and exam stakes s as w = w(y, s). We

assume a positive relationship between exam score and future wages, ∂w
∂y

> 0. The exam

score is a function of effort and temperature during the exam: y = y(e, a). For its derivatives,

we assume that (i) effort increases scores
(
∂y
∂e
> 0
)
, (ii) the effort effect diminishes

(
∂2y
∂e2

< 0
)

.

The key assumption in this model is that, when the exam stakes increase, the marginal

effect of exam scores on future wages increases as well: ∂2w
∂s∂y

> 0. In college admissions, which

directly influences future wages, exams can be more or less important in determining the

likelihood of acceptance. This relative importance of an exam to specific individual outcomes

defines an exam as low or high stakes. When the exam is low-stakes (e.g., exam scores have

a lower impact on college admissions), the indirect effect of exam scores on future wages is

relatively small. On the other hand, when the exam is high-stakes (e.g., exam scores have

a higher impact on college admission), the indirect effect of exam scores on future wages is

relatively high.

Given the above notation, we express the utility maximization problem as

max
e

U(w(y(e, a), s), e, a).

The first order condition is

∂U

∂w

∂w

∂y

∂y

∂e∗
+
∂U

∂e∗
= 0,

which captures the trade-off between the benefit and cost of increasing effort. While making

more effort increases exam scores and future wages, it exhausts the exam taker, decreasing

utility. At the optimal effort level, these two counteracting effects are balanced. To guarantee

the existence and the uniqueness of the solution in this maximization problem, we assume
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that the objective function is globally concave in the effort level: ∂U
∂w

∂2w
∂y2

(
∂y
∂e

)2
+ ∂U

∂w
∂w
∂y

∂2y
∂e2

+

∂2U
∂e2

< 0.

We can derive the effect of temperature on exam scores from y = y(e, a), evaluated at

the optimal effort e∗:

dy

da
=

∂y

∂e∗
∂e∗

∂a
+
∂y

∂a
.

This equation shows two paths from temperature to exam scores: The first path is

through a change in effort, and the second path is the direct effect on performance. Note

that the sign of ∂e∗

∂a
is undetermined. Under a higher temperature, while effort costs may

decrease effort level (due to ∂2U
∂e∂a

< 0), exam takers might increase their effort level to

compensate for the negative heat effect on performance. We provide proof that the total

effect of temperature on exam scores is negative (dy
da
< 0).6 This result provides us with the

following testable hypothesis:

Hypothesis 1 The increase in temperature negatively impacts exam scores.

We now derive the effect of a change in stakes on the response of exam scores to

temperature, evaluated at e∗:

d

ds

dy

da
=

∂2y

∂e∗2
∂e∗

∂s

∂e∗

∂a
+
∂y

∂e∗
∂2e∗

∂s∂a
+

∂y2

∂a∂e∗
∂e∗

∂s

=

(
∂2y

∂e∗2
∂e∗

∂a
+

∂y2

∂a∂e∗

)
∂e∗

∂s
+
∂y

∂e∗
∂2e∗

∂s∂a
.

The increase in s affects dy
da

through two channels. The first channel is the change in the

level of e∗. The second channel is the change in the temperature effect on the effort level.

The sign of d
ds
dy
da

is undetermined. Note that, if stakes are sufficiently high, exam

takers might sufficiently compensate for the temperature effect. That is, d
ds
dy
da
> 0 if ∂2e∗

∂s∂a
is

sufficiently large and positive.

6The proof is provided in Appendix A.
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This gives us the following hypothesis:

Hypothesis 2 The increase in exam stakes mitigates the negative effect of temperature on

exam scores.

We empirically test these two hypotheses and provide estimates of the temperature

effects on exam scores and the mitigating effects of increasing exam stakes.

4 Data description

In this section, we provide information on datasets and descriptive statistics. We use

three datasets: (i) individual data on the national exam (ENEM); (ii) university-campus-

level information on the adoption of the centralized system, SISU; (iii) municipal data on

weather.

4.1 ENEM and SISU data

ENEM (Exame Nacional do Ensino Médio - National High School Exam) is the primary

outcome data. It covers the universe of exam takers in Brazil from 2010 to 2016, averaging

1.5 million people per year.

The Ministry of Education maintains a publicly available database.7 It contains in-

formation on exam takers collected at the time of registration and their subsequent exam

scores. The data includes information on IRT-based final scores in the four subjects - natural

sciences, social sciences, Portuguese (language), and mathematics. It also contains demo-

graphic and socioeconomic information on exam takers, such as age and household income.

The data provides information on the municipality where each exam taker took ENEM. We

use this geographic information to link the exam outcome data to the weather data described

in the following subsection.

7INEP - Instituto Nacional de Estudos e Pesquisas Educacionais Ańısio Teixeira
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We restrict the population of exam takers to students in their last year of high school,

who compose about 20% of exam takers. We keep applicants that were present and not

eliminated from the exam.8 We also restrict the population to applicants that are 16 to 20

years old. The resulting data covers about 8 million high-school seniors distributed across

roughly 28,000 high schools taking the national exam from 2010 to 2016 in about 1,800

municipalities in Brazil (out of ≈ 5,600 municipalities total).9

Figure 1: Exam locations - municipality centroid

Note: The figure shows the municipalities with exam locations. The dots represent the municipality
centroid. The one red dot off the continent refers to Fernando de Noronha, a state-district administered
by the state of Pernambuco, Brazil. A municipality can have more than one exam site, but we do not
have information on the exact exam location.

Figure 1 shows the distribution of exam location across the country. They spread across

the country and are more concentrated in more populated areas. Exams are administered

on two consecutive days, Saturday and Sunday. Table 1 summarizes the types of exams by

day and the amount of time exam takers have available. Each multiple-choice exam has 45

8For example, students can be eliminated from the exam if they are caught cheating.
9The exam is not administered in every municipality, and students living in other places often take the

exam in the nearest available municipality.
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items. Exams are paper-based, and students can choose whichever exam-question order to

follow.

Table 1: Details on the structure of the exam

Exams Exam start Max. duration
Day 1 Social Sciences, Natural Sciences 1pm* 4h30min
Day 2 Portuguese, Mathematics and Essay 1pm* 5h30min

Note: (*) The start time refers to the Brasilia timezone. During the time of the exam, Brazil is under
four different time zones. In some areas, students start the exam at 10 am, 11 am, and 12 pm local
time. We adjust the temperature at the time of the exam for each municipality to reflect the hours the
students are actually taking the exam. All exam takers need to be at the exam location at least one
hour before the exam starts, which is strictly enforced. We exclude from the sample exam takers that,
for religious reasons, cannot start the exam until 7 pm. These individuals arrived at the exam location
at the same time as everyone else, and they wait in a room with no external communication until they
can start the exam.

The ENEM is composed of four multiple-choice exams and an essay. We focus on the

scores from the four exams - mathematics, natural sciences, social sciences, and Portuguese.10

The government computes the scores based on Item Response Theory, and thus the exam

does not have a universal minimum or maximum. Scores are officially normalized to have a

mean of 500 and a standard deviation of 100 for comparison over time. Figure 2 shows the

distribution of scores in the four exams.

10 We choose not to use essay scores in the main analyses for the following reasons: (i) Since the essay is
not a multiple-choice exam, we expect the nature of the exam to be different from other subjects; (ii) Since
humans grade the essays, the temperature can affect grading (Park, 2020), which prevents us from isolating
the temperature effect on exam takers’ performance. Regression results that include essay scores and how
they differ from our main analysis will be discussed in a robustness check.
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Figure 2: Distribution of exam scores
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Note: This figure shows the histogram of the score in the ENEM for all subjected pooled (Panel (a)) and
kernel density (Panel (b)) for each exam - science, social science, language, and math - for 2010-2016
data. The observation is at the student-exam level.

The ministry of education provides publicly available information on the number of

universities adopting SISU. The dataset contains yearly major-college level information on

the number of seats offered through the system. We merge this information with the Census

of Higher Education, which includes the universe of majors and colleges. Figure 3 shows the

number of universities adopting SISU (left-axis) and the number of municipalities with at

least one campus (right-axis) adopting SISU. As described in detail later in the paper, we

use this information as time and geographic variation in the importance (stakes) of ENEM.

4.2 Weather data

For weather information, we use the Princeton Global Meteorological Forcing Dataset

for land surface modeling. Details of the dataset are provided in Sheffield et al. (2006).
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Figure 3: Number of universities and municipalities with a university adopting SISU
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Notes: By 2017, 92 out of 192 state and federal universities have adopted SISU, that is, adopted ENEM
as their main or only criteria for admission. Accounting for different campuses, ≈ 359 municipalities had
at least one university campus adopting SISU. In 2017, the total number of federal and state universities
is 192 and total number of municipalities with a federal or state university is 628.

The Princeton data provides 3-hourly weather information such as temperature, humidity,

and daily rainfall on a 0.25-degree global grid. Exploiting its temporal resolution, we create

weather variables covering the exam period. In our main analysis, following previous studies

in the literature, we focus on the effects of temperature during exams on exam performance.

We use two different temperature measures. One is dry-bulb temperature, which we call

“temperature” henceforth. This is the temperature one would usually refer to in daily life.

The other is wet-bulb (WB) temperature. Wet-bulb temperature captures the interaction

effect of temperature and humidity. It is calculated based on dry-bulb temperature, air

pressure, and specific humidity. This measure has been used to represent heat stress danger

and thermal comfort, for instance, in the climate science and biology fields (Budd, 2008;

Liljegren et al., 2008). Several recent economic studies, such as Adhvaryu et al. (2020)

and Geruso and Spears (2018), have used wet-bulb temperature to analyze the interactions
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between temperature and humidity.11

Figure 4 shows the distributions of the two temperature measures. Comparing both

graphs, we see that temperatures are on average high (28oC), while the wet-bulb measure-

ment is, on average, 5oC cooler.

Figure 4: Temperature histograms (oC)
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Note: This figure shows the histograms of the average temperature during the exam over the two exam
days. The observation is at the exam-day/municipality/year level.

4.3 Summary statistics

Table 2 shows summary statistics for the sub-population of exam takers and set of

municipalities used in our analysis. High-school seniors taking the exam are, on average, 17-

18 years old, and 77% attend public high schools (either federal, state, or municipal). Note

that the number of high school seniors taking ENEM increased over time. One possibility for

this increase is the introduction of SISU, which affects the importance of ENEM, inducing

11For more details about the weather data, how to create the weather variables covering the exam period,
and how to calculate wet-bulb temperature, refer to Appendix B.
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more people to take the exam.12 We discuss further the possibility of selection bias due to

exam take-up induced by SISU.

Table 2: Summary Statistics

Mean SD Min Max

Raw exam score 506.47 90.57 252.90 1,008.30
Temperature (degree C) 27.68 3.68 16.15 43.97
Wet-bulb Temperature (degree C) 23.17 2.83 12.83 32.22
Precipitation (mm/day) 0.03 0.05 0 0.46
Female 0.59 0.49 0 1
Age 17.52 0.83 16 20
High-income HH 0.39 0.49 0 1

High school type
Federal HS 0.02 0.14 0 1
State HS 0.74 0.44 0 1
Municipal HS 0.01 0.10 0 1
Private HS 0.23 0.42 0 1

Gini coefficient 0.54 0.06 0.33 0.80
Share of poor 12.78 12.78 0.19 74.20
Education Development Indicator 0.66 0.08 0.27 0.81

Year
2010 0.11 0.32 0 1
2011 0.13 0.34 0 1
2012 0.14 0.34 0 1
2013 0.15 0.35 0 1
2014 0.16 0.36 0 1
2015 0.15 0.36 0 1
2016 0.16 0.37 0 1

SISU ratio (weighted, all, km) 0.44 0.22 0.03 0.93

Note: The unit of observation is subject-student. The number of observations is 32,392,992. When
we include the variable, type of high schools an exam taker is from, due to a few missing values, the
number of observations is 32,392,960. A household is high-income if the household’s income (a categorical
variable based on multiples of the minimum wage per household) is above the median income category.

12Other reasons are not directly related to this study, such as the introduction of affirmative action and
other policies that provided incentives to pursue higher education, along with the potential increases in the
returns to schooling, population increase, and so on.
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5 Empirical Strategy

We start from the descriptive fact that temperature and scores are negatively corre-

lated (Figure 5). Previous findings on the relationship between temperature and economic

development suggest that much of this negative correlation is likely due to other indirect

channels through which temperature can affect test scores.13 Our identification strategy

aims to identify the direct effects of temperature during the exam on exam performance.

Figure 5: Unconditional correlation between ENEM mean score and temperature.

Note: The figure shows the relationship between average temperature (in Celsius) and average mean
test scores at the municipality level. Mean scores are calculated as the simple average of the four
multiple-choice exams, excluding the essay.

We estimate the impact of temperature on exam performance by exploring variation

in local temperature experienced by the same individual across two exam days. Figure

6 illustrates yearly variations in temperature, from 2010 to 2016. The figure shows that

temperature varies across municipalities every year (panel (a)) and the two exam days in

a given municipality per year (panel (b)). The cross-day variation in temperature is used

to identify the effect of temperature on exam scores while controlling for individual-specific

factors.
13See Park et al. (2020) for evidence on learning or Dell et al. (2014) for evidence related to institutional

capacities.
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Figure 6: Distribution of temperatures per year: pooled and difference between day 2 and
day 1
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Note: The figure shows the municipality level variation in temperature (a) pooling the two days within
a year, (b) the difference from day 1 to day 2 per year, in Celsius.

Another important source of variation relies on temperature differences between two

exam days across years within the same municipality. Figure 7 explores the within-municipality

variation across years for two different years in our period of analysis, 2013 and 2016.14 These

observed yearly municipality level variations in temperatures across exam days rule out the

possibility that the temperature difference across exam days is correlated with municipal

characteristics such as long-run climate.

14Maps of the temperature differences across two exam days for all of the years in our data are provided
in Figure E.1.
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Figure 7: Variation in temperature during exam from day one to day two, for 2013 and 2016

(a) 2013 (b) 2016

Note: The figure shows municipality-level variation in temperature from day 1 to day 2 (difference =
day 2 − day 1) for 2013 and 2016. Cross-day variations for all years are showed in the appendix (E.1).
Municipalities that did not have an exam site are displayed on the map in white.

Next, we formally introduce our empirical strategy. First, we describe our strategy to

identify the impact of temperature on exam scores. Second, we explain how we identify the

effects of temperature interacted with the degree of exam stakes.

5.1 Estimating the effects of temperature on exam scores

Our empirical model exploits the temperature variation described above to assess the

effect of temperature on exam scores. Let Yimsdt be the standardized exam score of a student

i in a municipality m on a subject s that was taken on a day d in year t. Raw exam scores

are standardized to have mean 0 and standard deviation 1 within subject-year. Also, let

f(Tmdt) be a transformation of temperature Tmdt. As Tmdt, we use the dry-bulb temperature

and the wet-bulb temperature during exams. The function f can be parametric (e.g., linear

function of Tmdt) or non-parametric (e.g., 2oC bins of temperature). Precipitation on the

exam days is included in the regressions (Xmdt). This variable is intended to account for
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the possibility that rainfall exam takers experience while heading for exam sites affects their

discomfort level, affecting their exam performance. Fixed effects included in the regression

are student fixed effects (µi), subject fixed effects (ηs), and exam date fixed effects (τdt). The

error term is represented as εimsdt.

Our regression equation is:

Yimsdt = f(Tmdt) +X ′mdtβ + µi + ηs + τdt + εimsdt. (1)

The necessary identification condition is that the temperature variables, Tmdt, are un-

correlated with the error term, conditional on the included covariates. One potential concern

is that long-run average temperature can be correlated with human capital in municipalities.

If, for instance, warmer areas tend to have more low-performance students, then the corre-

lation between heat on the exam date and students’ exam performance can be spurious. In

Equation (1), we exclude this possibility by including individual fixed effects, which controls

for both unobserved municipality-level and individual-level confounders. Additionally, sub-

ject fixed effects control for persistent common differences in performance across different

specific exams. Exam-date controls for average differences in mean performance between the

two days and average changes in temperature due to climate cycles/change.

Another concern is that we do not have data on air conditioning usage during the

exam, which can bias down our results since air conditioners could mitigate the effects of

higher temperatures. Based on institutional knowledge, air conditioning coverage in exam

locations is likely to be low and concentrated in more developed areas, on which we provide

some evidence below. Nonetheless, in our robustness exercises, we control for the possibility

of time-varying factors, which also accounts for a potential increased air conditioning use.

Although we cannot provide conclusive evidence regarding air conditioning, we provide

some information regarding classroom conditions in high schools. To the best of our knowl-
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edge, high school classrooms are used as most exam sites for ENEM. For high schools, a 2019

national survey administered to school teachers asked them to report classroom conditions

related to natural ventilation and temperature.15 Based on teachers’ reports, about 50% of

schools have less than adequate ventilation. As for temperature, 67.4% of classrooms have

less than adequate temperature. Although the temperature question does not specify air con-

ditioning usage, the high share of classrooms with inadequate ventilation and uncomfortable

temperature suggests that most high schools do not use an air conditioning system.

Additionally, we assessed information on AC coverage in households nationwide. For

instance, in 2019, 16% of households in Brazil reported having air conditioners. Moreover,

virtually no household has central air conditioning: 99.5% report having a window, portable,

or a split unit.16 This supports the idea that the diffusion of air conditioners is limited in

Brazil.

5.2 Estimating the effects of temperature on exam scores, inter-

acted with the degree of exam stakes

Our study also investigates a mechanism behind the relationship between temperature

and exam scores. For this purpose, we include an interaction term between temperature and

the stakes of the ENEM in our main estimation equation and analyze how the temperature

effect changes as ENEM stakes vary. Specifically, we run the following regression:

Yimsdt = f(Tmdt) + θ (f(Tmdt)×Hmt) + µi + δs + τd + εismdt, (2)

where Hmt is a proxy for the ENEM stakes.

15Teacher module, SAEB 2019 - Sistema de Avaliação da Educacão Básica (Saeb). Questions relative to
ventilation and temperature are based on a scale of 1 (Inadequate) to 4 (Adequate). We interpret answers
less than 4 (adequate) as less than adequate.

16Source: ELETROBRAS. Relatório de resultados do Procel 2020: ano base 2019. Rio de Janeiro: PRO-
CEL, 2020.
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The variable Hmt measures the proportion of universities adopting SISU at a munici-

pality, weighted by the geographic distance between municipalities. As previously discussed,

SISU is a centralized university admission system. While all state and federal universities

were allowed to participate in the system, adoption was not mandatory, and the timing of

adoption varies across universities. When a university adopts SISU, ENEM becomes a neces-

sary, and often the sole, criterion for college admissions. Therefore, SISU adoption increases

the stakes of ENEM for students applying for college. The centralized admissions system

allows people from all over the country to apply to any university offering seats through

SISU. The main information a student needs to provide to apply to a college within the

system is their ENEM score.

Our identification strategy relies on the high migration costs for college purposes. In

Brazil, there are limited options for students interested in attending university outside their

hometown. The market for college financial aid does not cover living expenses. Housing

provided by universities is rare and often allocated to low-income applicants. Therefore,

moving to another state to attend a college is expensive, which might explain the vast

majority of college students attending universities in their home state.

Given the high mobility costs, SISU adoption by a university can differently impact

applicants living in different places. We expect applicants who reside closer to the adopting

university to be more affected by the adoption than a student living further from that

university. To capture this variation induced by distance to college, we create a municipality-

level variable based on the proportion of universities adopting SISU nationwide, with larger

weights to municipalities closer to the municipality where a student takes the ENEM.

We use the following formula to construct Hmt, which we call “SISU ratio” henceforth:

Hmt =

∑
n∈all municipalities in Brazil wnm(# universities adopting SISU)nt∑

n∈all municipalities in Brazil wnm(# universities)nt
(3)
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where wnm are weights defined as wnm = 1
1+(Distance between n and m (km))

.17

Our empirical strategy exploits the substantial variation in this ratio across years (based

on the proportion of universities adopting SISU) and across municipalities (based on the

distances across municipalities with and without adopting colleges). Summary statistics

for the SISU ratio are shown in Table 2. Figure 8 shows the SISU ratio distributions by

year. The figure illustrates the increase in the SISU ratio over time, consistent with more

universities adopting SISU in later years (Figure 3).

Figure 8: Distribution of the SISU ratio in each year
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Note: The figure shows the distribution of the SISU ratios by year. The unit of observation is
municipality-year. The construction of the variable is described in detail in the main text.

17How to calculate Hmt is illustrated in Appendix C with a toy example.
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6 Results

6.1 How do temperature shocks affect test scores?

First, we estimate Equation (1) when f(Tmdt) is linear, reported in Table 3. The

estimates show a negative impact of high temperature on exam scores. Column (1) contains

results using the dry-bulb temperature as the temperature measurement. The point estimate

is negative and statistically significant, indicating that exam scores are lower when students

take the exam under higher temperatures. A one standard deviation increase in temperature

(3.679oC or 6.622oF) reduces exam scores by 0.036 standard deviations.

Table 3: Regression results: Linear function of temperature, using ENEM Z-score

(1) (2) (3)
VARIABLES Z-score Z-score Z-score

Temp. during exam -0.0097*** -0.0097***
(0.0011) (0.0010)

WB during exam -0.0115***
(0.0012)

Precipitation (m/day) on exam day 0.0066
(0.0314)

Observations 32,392,992 32,392,992 32,392,992
R-squared 0.750 0.750 0.750
Subject FE Yes Yes Yes
Individual FE Yes Yes Yes
Exam date FE Yes Yes Yes
Std. dev. of temperature var. 3.679 3.679 2.834

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: This table presents estimates for the linear effects of temperature on exam scores. The unit of
observation is subject-student-year. The dependent variable is the Z-scores of exams in each subject-year.
WB stands for wet-bulb temperature. Standard errors are clustered at the municipality level.

In column (2), we include precipitation on the exam day as an additional variable in

the regression. This does not change the point estimate for dry-bulb temperature, indicating
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that rainfall has only a negligible impact on exam scores.

In column (3), instead of dry-bulb temperature, we use wet-bulb temperature, which

considers the interaction between temperature and humidity. The result is qualitatively and

quantitatively similar to the ones using the dry-bulb temperature. Estimates are negative

and statistically significant. We find that a one standard deviation increase in wet-bulb tem-

perature (2.834oC or 5.098oF) reduces exam scores by 0.032 standard deviations. Whereas

we proceed with our discussions based on the results with dry-bulb temperature, the overall

implications are similar if the estimates based on wet-bulb temperature are used.

Figure 9 shows regression results for the non-parametric case, in which flexible temper-

ature effects are allowed using binned temperature. Consistent with the results based on the

linear specification, the figure illustrates the negative impact of high temperature on exam

scores. Our results are consistent with patterns found by Graff Zivin et al. (2020) using

a similar non-parametric specification.18 The estimates also suggest a non-linear effect of

temperature on scores. Relative to the reference bin (28-30 oC), standardized exam scores

increase by 0.05 in the 24-26 oC bin. Meanwhile, they decrease only by 0.02 in the 32-34 oC

bin.

18Note that Graff Zivin et al. (2020) relies on county variation from the average to identify their effects of
interest. In contrast, our paper relies on within-individual variation across two exam days.
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Figure 9: Regression results: temperature and exam Z-scores
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Note: The figure shows estimates of the effects of temperature on Z-scores using a flexible temperature
functional form. The unit of observation is subject-student-year. The dependent variable is the Z-
scores of exams in each subject-year. Error bars indicate 95% confidence intervals. Precipitation on the
exam days, exam-date fixed effects, subject fixed effects, and individual fixed effects are included in the
regression. Standard errors are clustered at the municipality level.

The negative and economically important effects of temperature on exam scores are

consistent with previous findings in the literature, both qualitatively and quantitatively. For

example, Park (2020) finds a decrease in 0.13 standard deviations in scores if a student takes

an exam under a temperature above 90 oF (or above 32 oC) compared to a temperature below

70 oF (or below 21 oC). In our study, the increase in temperature from the 20-22 oC bin to

the 30-32 oC bin decreases the exam score by 0.13 standard deviations. They also find that

the magnitude of the negative impact of high temperature becomes stable above 80 oF (or

above 27 oC). Potential mechanisms they suggest include (i) extremely hot temperatures are

rare in their study, which can undermine the power of a statistical test, and (ii) exam scores
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may be adjusted by graders’ compensatory responses. Neither of them explains our non-

linear results for the following reasons: First, in our setting, many municipalities experience

high temperatures. Second, our outcome variables are based on scores from multiple-choice

questions, ruling out compensatory behaviors by graders.

Studying the same context of ours and using the same exam data, Li and Patel (2021)

find economically and statistically insignificant null impacts of temperature on exam scores.

The distinct average effects of temperature on performance are explained mainly by, first,

different temperature data and frequency. Our paper uses temperature during the exam,

whereas their use daily average temperature. Second, their paper selects exam takers 14 to

22 years old, including high-school seniors and individuals who decided to take (or retake)

the exam one or more years after graduating from high school. Instead, we restrict our

analysis to high school seniors in our empirical analyses. Since ENEM is used for college

admissions, high-school seniors are most likely taking the exam for the first time. Third,

they use all exam scores, mixing scores on both multiple-choice and essay types of exams.

A more detailed discussion on the differences between our study and theirs is provided in

Appendix D.

6.2 How does the temperature effect interact with the exam stakes?

In the previous subsection, we reported findings on the negative impact of high temper-

ature on exam scores. We now use regression equation (2) to analyze how the exam stakes

interact with the temperature effect. The coefficient estimates indicate how the tempera-

ture effect on exam scores changes as the exam stakes increase. The regression results with

linear temperature effects are shown in Table 4, column (1). Columns (2)-(4) refer to our

robustness check, which we will discuss in detail in the next section.
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Table 4: Regression results: Interaction effects of temperature and ENEM stakes on exam
Z-score

(1) (2) (3) (4) (5)
VARIABLES Z-score Z-score Z-score Z-score Z-score

Temp. × SISU ratio 0.0254*** 0.0246*** 0.0252*** 0.0186*** 0.0180***
(0.0047) (0.0048) (0.0051) (0.0048) (0.0048)

Observations 32,392,992 32,392,960 32,392,992 32,392,992 32,392,960
R-squared 0.750 0.750 0.750 0.750 0.750
Subject FE Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes
Exam date FE Yes Yes Yes Yes Yes
Ind. Var. Interactions No Yes No No Yes
Mun. Var. Interactions No No Yes No Yes
Year Interactions No No No Yes Yes
Std. dev. of ratio 0.220 0.220 0.220 0.220 0.220
Average temperature effect -0.0097 -0.0097 -0.0097 -0.0097 -0.0097

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Average temperature effect is the estimated coefficient α̂ from a regression equation, Yimsdt =
αTmdt +X ′

mdtβ + µi + ηs + τdt + εimsdt. Precipitation on exam days is controlled for in all regressions.
Standard errors are clustered at the municipality level.

Estimates indicate both economically and statistically significant impacts of ENEM

stakes on temperature effects. For instance, when the SISU ratio increases from zero to one,

the temperature effects change by 0.0254. Alternatively, increasing the SISU ratio by a one

standard deviation (0.220), the temperature effect on Z-scores decreases in magnitude by

0.0056.

The attenuating effects of SISU are more evident when we allow for a flexible effect of

temperature on scores, given the non-linear relationship found in the previous section. Fig-

ure 10 shows the regression results using binned temperature, illustrating how temperature

effects differ depending on the SISU ratio. As the ratio increases (more universities adopt

SISU), the temperature effects across bins become smaller in magnitude.
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Figure 10: Regression coefficients of temperature × SISU adoption ratio
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Notes: Effects are calculated based on point estimates from regressions of Z-scores on temperature and
its interaction with SISU adoption ratio. Error bars indicate 95% confidence intervals. Municipalities
whose distance from the municipality where a student took ENEM is less than 60km are used, and the
inverse of the distance between municipalities is used as weights. Precipitation is controlled for in all
regressions. Standard errors are clustered at the municipality level.

Based on the theoretical model, these results suggest that the increase in ENEM stakes

induces students to exert more effort, attenuating the adverse effects of high temperature

on performance. To put this result in perspective with the main ones, the changes due to

SISU adoption correspond, on average, to a 57% reduction in the effect of temperature on

exam scores. In the lowest bin, the temperature effect decreases by 82.6% if the SISU ratio

increases from 0.25 to 0.75.

Our results shed light on a mechanism behind the effect of temperature on cognitive

performance: temperature affects the level of effort, which changes the outputs of cognitive

tasks. Exploiting the staggered adoption of SISU, we provide the first empirical evidence
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that the increase in exam stakes mitigates the temperature effect.

7 Robustness checks

One potential concern is that the SISU ratio for each municipality may be capturing

other factors that can affect the relationship between temperature and exam scores. We

consider three possibilities: (i) selection bias; (ii) endogenous SISU adoption; (iii) time-

varying factors.

First, SISU adoption can change the composition of exam takers. As described before,

SISU adoption increases the stakes of ENEM as ENEM becomes a necessary condition for

college admissions. In turn, this change in stakes can induce more students to register and

take the exam. For example, if students induced to take ENEM are less affected by temper-

ature, the observed results could be partially attributed to this compositional effect. To deal

with the possibility that temperature effects might differ based on students’ characteristics,

we add to the regression equation interaction terms of temperature and individual-level vari-

ables. We include an indicator of high-income households (above median income) and the

type of high school (federal, state, municipal, and private).

Second, SISU adoption by universities can be endogenous. SISU may be adopted in re-

gions with better education systems and with high-quality educational infrastructure. Exam

takers in these regions can be less affected by temperature. If this is the case, then the

positive coefficients of the interaction between temperature and SISU adoption ratio could

be caused by the municipality-level factors correlated with SISU adoption. To investigate

this concern, we include interaction terms of temperature and municipality-level variables.

The municipality-level variables include Gini coefficients, poverty rate, and education index.

Finally, there may be omitted time-varying factors. Over time, more universities may

adopt SISU at the same time that exam sites may install air conditioners, which can also
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reduce the temperature effect on exam scores. To account for this possibility and other

time-varying factors, we include interactions between temperature and year dummies.

Equation (4) is the regression equation including all interaction terms described above.

We show results for each added separately as well as together. Each time, our coefficient

of interest is θ, the coefficient capturing how SISU adoption affects individual responses to

temperature. Estimation results are shown in Table 4, columns (2) to (5).19

Yimsdt

= f(Tmdt) + θ (f(Tmdt)×Hmt)

+ γ1 (f(Tmdt)×Ximt) + γ2 (f(Tmdt)× Zmt) + γ3

(
f(Tmdt)×

t=2016∑
t=2010

Y eart

)
(4)

+ µi + δs + τd + εismdt,

Table 4 shows that the interaction terms have limited effects on the estimated coefficient

of the main interaction term between temperature and the SISU adoption ratio. First,

including interactions between temperature and individual-level variables (column (2)) and

municipality-level variables (column (3)) barely changes the estimates of interest.

Including the interactions with year-dummies makes the coefficient of interest smaller

(column (4)). These smaller estimates could be due to an increase in air conditioner instal-

lation or other time-varying factors correlated with SISU adoption. We cannot address these

potential confounders. Still, the mitigating effect of the SISU ratio remains statistically and

economically significant. An increase in the SISU ratio by a one standard deviation reduces

the temperature effect by 42%. The fact that the SISU still mitigates the temperature ef-

fect significantly even after including the interactions with year-dummies suggests that the

19This table only shows the estimate of the coefficient on the interaction between temperature and the
SISU ratio. Table F.1 provides estimates of all interaction terms used in the regressions.
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results in Table 4 capture effects of non-SISU factors to some extent but not entirely.

Another robustness check we conduct investigates if our results are driven by how

we construct the SISU ratio. For this, we attempt two changes. First, we change the

municipalities used to calculate the SISU ratio. In our main estimates, all municipalities

in Brazil are included in the calculations of the SISU ratio. That assumes that all exam

takers demanding higher education, that is, taking the ENEM, can be potentially affected

by any university adopting SISU. However, it is possible that only universities in neighboring

municipalities may affect exam takers.

Alternatively, we use the proportion of universities adopting SISU in neighboring mu-

nicipalities to calculate the ratio. The set Mm represents the set of municipalities included

in this calculation, for which we use two definitions: (i) municipalities within 60km from a

municipality m, and (ii) in the same microregion (defined mainly by a commuting zone) as

m. We provide estimates with and without distance weighting to calculate the ratio. We

also change the unit of distance to calculate the weights from kilometers to meters and also

to miles. Specifically, we use the following formula:

Hmt =


0 if there is no university in any municipalities in Mm∑

n∈Mm
wnm(# universities adopting SISU)∑
n∈Mm

wnm(# universities)
otherwise.

We expect the different measures to change the estimates’ magnitudes since a fraction

of exam takers that were previously considered treated to some extent are now treated by a

SISU ratio equal to zero. Our robustness check relies on the qualitative interpretation of the

coefficients of interest. Results in Tables F.2 and F.3 show qualitatively similar results that

SISU mitigates the effects of temperature, which supports the robustness of our empirical

results.
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8 Conclusion

This paper evaluates an important channel through which temperature affects exam

scores: effort. Our theoretical framework suggests that temperature can affect performance

through the cognitive and effort channels. We derive two hypotheses. One is that temper-

ature negatively affects exam scores. The other is that these adverse effects are lower as

the exam stakes increase, mitigated by compensatory changes in effort. Our identification

strategy exploits within-individual variation in temperature across two consecutive exam

days. Using data on millions of exam takers in a national standardized exam in Brazil,

we estimate the differential effects of temperature by exam stakes. A unique feature of the

Brazilian context provides variation in stakes, where a national exam’s stakes increased from

relatively low to high.

Our paper provides the first evidence on how exam stakes mitigate the effects of tem-

perature on exam scores. First, we show that that temperature negatively impacts exam

scores. Our baseline effects are comparable to other studies in China and the US. When ex-

ploiting the variation in exam stakes, we find that the higher the stakes, the lower the effects

of temperature, suggesting that effort mitigates the effects of temperature on performance.

The understanding that low-stakes exams are affected by motivation and effort during

the exam is largely discussed in the literature (see Finn (2015) for a review). Our paper

shows that the harmful effects of temperature on performance are less of a concern if stakes

are sufficiently high, such as when admissions to selective universities are exclusively based

on one exam’s outcome. On the other hand, students have lower incentives to compensate

for the negative effects of temperature when exams are not directly linked to their outcomes.

These findings are particularly relevant since test scores are widely used to allocate financial

resources to schools, college seats, teacher’s bonuses, and rank countries. Negative effects of

temperature can result in inaccurate rankings and translate into unequal redistribution of
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resources or biased cross-country evaluations. The extent to which these effects might gen-

erate bias depends on how it relates to demographic and socioeconomic status, an important

topic for future research.
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A Proof of dy
da < 0

Remember that the first order condition (FOC) is
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∂y

∂U
∂w

+ ∂2U
∂e∗2

.

Substituting this into dy
da

= ∂y
∂e∗

∂e∗

∂a
+ ∂y

∂a
, we obtain

dy

da
= − ∂y

∂e∗

∂y
∂a

∂y
∂e∗

(∂w
∂y

)2 ∂2U
∂w2 + ∂w
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∂2y
∂e∗∂a

∂U
∂w

+ ∂y
∂a
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∂e∗
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∂y2
∂U
∂w

)
+ ∂2y

∂e∗2
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∂y

∂U
∂w

+ ∂2U
∂e∗2

+
∂y

∂a

=
− ∂y
∂e∗

(
∂w
∂y

∂2y
∂e∗∂a

∂U
∂w

+ ∂2U
∂e∗∂a

)
+ ∂y

∂a

(
∂2y
∂e∗2
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+ ∂2U
∂e∗2

)
( ∂y
∂e∗

)2
(

(∂w
∂y

)2 ∂2U
∂w2 + ∂2w

∂y2
∂U
∂w

)
+ ∂2y

∂e∗2
∂w
∂y

∂U
∂w

+ ∂2U
∂e∗2

=
− ∂y
∂e∗

(
∂w
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∂2y
∂e∗∂a
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∂w

+ ∂2U
∂e∗∂a

)
+ ∂y

∂a

(
∂2y
∂e∗2

∂w
∂y

∂U
∂w

+ ∂2U
∂e∗2

)
( ∂y
∂e∗

)2(∂w
∂y

)2 ∂2U
∂w2 +

(
( ∂y
∂e∗

)2 ∂2w
∂y2

∂U
∂w

+ ∂2y
∂e∗2

∂w
∂y

∂U
∂w

+ ∂2U
∂e∗2

) < 0.

For the last inequality, we use the assumption that the utility function is globally concave

in the effort level: ∂U
∂w

∂2w
∂y2

(
∂y
∂e∗

)2
+ ∂U

∂w
∂w
∂y

∂2y
∂e∗2

+ ∂2U
∂e∗2

< 0.

B Construction of weather-related variables

We use the Princeton Meteorological Forcing Dataset to obtain weather information.

This reanalysis dataset combines the climate model information and observational data from

various sources, such as weather stations and satellite images. This allows us to use weather

information in remote places where observational data tends to be scarce. The Princeton Me-
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teorological Forcing Dataset is a 3-hourly dataset: weather information each day is recorded

at 0 am, 3 am, . . . , 9 pm at Greenwich time zone. Also, the weather information is recorded

on a 0.25-degree global grid. For details on the dataset, see Sheffield et al. (2006).

We use dry-bulb temperature, specific humidity, air pressure, and rainfall information

in the dataset. To obtain each of these variables at each municipality where an exam is

held, we use measures at four grid points surrounding municipality centroids and take their

weighted average, with the inverse distance between the centroids and each of the four grid

points as a weight. For weather variables other than precipitation during exams, we calculate

the average of temperature measures from the latest time before the start-time of exams and

the earliest time after the end-time of exams. For example, in Brasilia in 2016, the exam on

the first day started at 1:30 pm and ended at 5:30 pm at the local time. In this case, we take

the average of the temperatures at 12 pm, 3 pm, and 6 pm at the local time and use it as

a temperature measurement on a particular day. For precipitation, we use the precipitation

on the “exam day” in the weather dataset. This measure is the precipitation from 9 pm on

the previous day to 9 pm on the exam day, as is provided by the dataset.

In the analyses, we use two different measures for temperature: dry-bulb temperature

and wet-bulb temperature. Dry-bulb temperature is directly obtained from the Princeton

Meteorological Forcing Dataset, and the wet-bulb temperature is calculated based on dry-

bulb temperature, specific humidity, and air pressure, using the following formula (Geruso

and Spears, 2018):

Twb = Tdb ∗
[
atan(0.151977 ∗ (R + 8.313658)1/2

]
+ atan(Tdb +R)

− atan(R− 1.676331) + 0.00391838R3/2 ∗ atan(0.023101R)− 4.686035

R = 0.263 ∗ p ∗ s ∗
[
exp

(
17.67Tdb
Tdb + 243.5

)]−1

,
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where Twb is wet bulb temperature (°C), Tdb is dry-bulb temperature (°C), R is relative

humidity (%), p is air pressure (Pa), and s is specific humidity.

C Illustration of how to construct the exam stakes

variable

Remember that the SISU ratio is calculated based on the following formula:

Hmt =

∑
n∈all municipalities in Brazil wnm(# universities adopting SISU)nt∑

n∈all municipalities in Brazil wnm(# universities)nt

where wnm are weights defined as wnm = 1
1+(Distance between n and m (km))

. Here we provide a toy

example to illustrate the calculation of this variable.

Suppose that there are three municipalities (A, B, and C) and four universities, one in A

and C and two in B (Figure C.1). We consider a situation where one university in B adopts

SISU (panel (a)). In this case, the SISU ratio for the municipality A, HAt, is calculated as

HAt =
wAA · 0 + wAB · 1 + wAC · 0
wAA · 1 + wAB · 2 + wAC · 1

=
1

1+0
· 0 + 1

1+2
· 1 + 1

1+10
· 0

1
1+0
· 1 + 1

1+2
· 2 + 1

1+10
· 1

≈ 0.19.

Now suppose that the university in the municipality A adopts SISU as well (panel B).

We expect that this increases the stakes of ENEM for students in A since ENEM becomes

more important for admission for the university in A. Therefore, we expect that HAt increases
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due to the SISU adoption. If we calculate HAt in this new situation, we obtain

HAt =
1

1+0
· 1 + 1

1+2
· 1 + 1

1+10
· 0

1
1+0
· 1 + 1

1+2
· 2 + 1

1+10
· 1

≈ 0.76.

This is higher than the SISU ratio in the previous situation, which is consistent with our

expectation.

Figure C.1: Illustration of ENEM stakes variable Hmt

(a) Hmt ≈ 0.19

A

BC

2km

10km

Univ. adopting SISU

Univ. not adopting SISU

(b) Hmt ≈ 0.76

A

BC

2km

10km

D Robustness check based on differences to Li and Pa-

tel (2021)

Our paper was developed in parallel and without knowledge of the work by Li and Patel

(2021). In their paper, they also estimate the effects of temperature on ENEM. Our paper

performs a similar exercise, but we also estimate the differential effects of temperature by

varying degrees of exam stakes. For the average temperature effects, using the same data

and the econometric specification as ours, they find positive and statistically significant but

economically negligible impacts of temperature on exam scores. This section compares our

results to theirs and performs additional robustness checks by adopting some of their design

decisions.
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First, we demonstrate where the main differences in estimates come from. We estimate

the effects of temperature on exam scores using data from 2012 to 2016 (Table D.1). Second,

as a robustness check, we will use our preferred time frame, 2010 to 2016, and discuss how

different sampling restrictions affect our results (Table D.2).

In table D.1, columns (1) to (4), we use high school seniors in the analyses, and we

vary the temperature measurement. In columns (5) to (8), we restrict the population by

ages 14 to 22. In columns (1) and (2), we use temperature during the exam. Estimates in

columns (1) are the closest to our paper’s main specification, only varying the time frame.

Estimates are slightly smaller than our original results, showing the results are not driven by

the first couple of years of SISU adoption. As discussed above, by 2012, 60 universities had

already adopted SISU, increasing the average perceived ENEM stakes relative to 2010 when

only 25 universities had adopted SISU. But there is still a negative effect of temperature

on exam scores, both economically and statistically significant. In column (2), we include

essay scores, and the estimate drops to almost a third compared to column (1). Columns

(3) and (4) uses the daily average temperature. Both columns show that using average daily

temperature substantially reduces the estimates. Using both the essay score and average

daily temperature (column 4), we see statistically and economically insignificant effects.

From columns (5) to (8), using exam takers between ages 14 and 22, the estimates are

considerably smaller compared to columns (1) to (4), when we used high school seniors. One

possibility is that the stakes are higher for older students taking the exam for the second or

more time, lowering the average temperature effects. Column (8) replicates all specifications

used by Li and Patel (2021) and shows a negligible and statistically insignificant temperature

effect.20

Now, in table D.2, using the same time frame as in our main specification, we see

20We cannot precisely replicate the regression results in Li and Patel (2021). We believe the main reason
is that we use weather information from a reanalysis dataset, which integrates data from various sources,
such as weather stations and satellite observations. Instead, they use data collected from weather stations.
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that adopting the same sampling criteria as in Li and Patel (2021) substantially reduces

our estimates. Including an essay seems to be the most important factor in reducing the

estimates, comparing columns (1) and (2). Using average daily temperature is the second

most important factor (comparing columns (1) and (3)), followed by including high-school

graduates, comparing columns (1) and (5). In column (8), the combination of all results in

an estimative that is negligible and statistically insignificant. For reasons explained above,

we consider our main estimates the preferred ones.
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Table D.1: Regression results: Comparison with results in Li and Patel (2021) (data between
2012 and 2016)
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Note: we use the sample between 2012 and 2016. Standard errors are clustered at the municipality level.
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Table D.2: Regression results: Comparison with results in Li and Patel (2021) (data between
2010 and 2016)
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Note: we use the sample between 2010 and 2016. Standard errors are clustered at the municipality level.
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E Appendix figures

Figure E.1: Variation in temperature during exam from day one to day two, from 2010 and
2016

(a) 2010 (b) 2011 (c) 2012

(d) 2013 (e) 2014 (f) 2015

(g) 2016

Notes: The figure shows the municipality level variation in temperature from day 1 to day 2 (difference
= day 2 − day 1) from 2010 to 2016. In the municipalities with white color, nobody in our sample took
ENEM in the year.
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F Appendix tables

Table F.1: Regression results: Interaction effects of temperature and ENEM stakes and other
potentially confounding factors on exam z-score

(1) (2) (3) (4) (5)
VARIABLES Z-score Z-score Z-score Z-score Z-score

Temp. × SISU ratio 0.0254*** 0.0246*** 0.0252*** 0.0186*** 0.0180***
(0.0047) (0.0048) (0.0051) (0.0048) (0.0048)

Temp. × High Inc -0.0061*** -0.0058***
(0.0007) (0.0005)

Temp. × State HS -0.0106*** -0.0105***
(0.0015) (0.0015)

Temp. × Mun HS -0.0195*** -0.0180***
(0.0034) (0.0031)

Temp. × Pri HS -0.0026* -0.0009
(0.0015) (0.0013)

Temp. × Gini -0.0011 -0.0019
(0.0018) (0.0018)

Temp. × Percent Poor -0.0012 -0.0000
(0.0018) (0.0017)

Temp. × Education Index -0.0034** -0.0028**
(0.0014) (0.0014)

Temp. × 2011 -0.0017 -0.0020
(0.0020) (0.0020)

Temp. × 2012 -0.0052*** -0.0055***
(0.0019) (0.0020)

Temp. × 2013 0.0033*** 0.0037***
(0.0013) (0.0011)

Temp. × 2014 -0.0028 -0.0027
(0.0021) (0.0021)

Temp. × 2015 0.0135*** 0.0141***
(0.0024) (0.0027)

Temp. × 2016 0.0071* 0.0063
(0.0039) (0.0041)

Observations 32,392,992 32,392,960 32,392,992 32,392,992 32,392,960
R-squared 0.750 0.750 0.750 0.750 0.750
Subject FE Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes
Exam date FE Yes Yes Yes Yes Yes
Std. dev. of ratio 0.220 0.220 0.220 0.220 0.220
Average temperature effect -0.00968 -0.00968 -0.00968 -0.00968 -0.00968

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Individual-level variables interacted with temperature are an indicator of above-median-income household and the
type of students’ high school (federal, private, state, or municipal). Municipality-level variables interacted with temperature
are the Gini coefficient, the poverty rate, and the education index, which are standardized (mean 0 and sd 1). Precipitation
on exam days is controlled for in all regressions. Average temperature effect is the estimated coefficient α̂ from a regression
equation, Yimsdt = αTmdt +X′mdtβ + µi + ηs + τdt + εimsdt. Standard errors are clustered at the municipality level.
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Table F.2: Robustness checks by varying the municipalities is included to calculate SISU
ratios

(1) (2) (3) (4) (5)
VARIABLES Z-score Z-score Z-score Z-score Z-score

Temp. × SISU ratio (weighted, all) 0.0254***
(0.0047)

Temp. × SISU ratio (unweighted, 60km) 0.0109***
(0.0016)

Temp. × SISU ratio (weighted, 60km) 0.0088***
(0.0018)

Temp. × SISU ratio (unweighted, CZ) 0.0075***
(0.0013)

Temp. × SISU ratio (weighted, CZ) 0.0076***
(0.0016)

Observations 32,392,992 32,392,992 32,392,992 32,392,992 32,392,992
R-squared 0.750 0.750 0.750 0.750 0.750
Subject FE Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes
Exam date FE Yes Yes Yes Yes Yes
Std. dev. of ratio 0.220 0.349 0.381 0.378 0.399
Average temperature effect -0.0097 -0.0097 -0.0097 -0.0097 -0.0097

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The variable “SISU ratio” is the proportion of universities adopting SISU, with different munic-
ipalities used for calculations. For column (1), all municipalities in Brazil are used. For columns (2)
and (3), municipalities whose distance from the municipality where a student took ENEM is less than
60km are used. For columns (4) and (5), municipalities that belong to the same commuting zone as
the municipality where a student took ENEM are used. For columns (2) and (4), the weights were not
used, and for columns (1), (3), and (5), the inverse of the distance (km) between municipalities is used
as weights. Precipitation on exam days is controlled for in all regressions. Average temperature effect is
the estimated coefficient α̂ from a regression equation, Yimsdt = αTmdt +X ′

mdtβ + µi + ηs + τdt + εimsdt.
Standard errors are clustered at the municipality level.
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Table F.3: Robustness checks by different distance units used to calculate SISU ratios

(1) (2) (3)
VARIABLES Z-score Z-score Z-score

Temp. × SISU ratio (all, km) 0.0254***
(0.0047)

Temp. × SISU ratio (all, mile) 0.0316***
(0.0056)

Temp. × SISU ratio (all, meter) 0.0117***
(0.0025)

Observations 32,392,992 32,392,992 32,392,992
R-squared 0.750 0.750 0.750
Subject FE Yes Yes Yes
Individual FE Yes Yes Yes
Exam date FE Yes Yes Yes
Std. dev. of ratio 0.220 0.196 0.337
Average temperature effect -0.0097 -0.0097 -0.0097

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The variable “SISU ratio” is the proportion of universities adopting SISU, with different weights
used for calculations. For column (1), kilometer distances are used as weights. For column (2), mile
distances are used as weights. For column (3), meter distances are used as weights. Precipitation on
exam days is controlled for in all regressions. Average temperature effect is the estimated coefficient α̂
from a regression equation, Yimsdt = αTmdt+X ′

mdtβ+µi+ηs+τdt+εimsdt. Standard errors are clustered
at the municipality level.
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